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Exact particular solutions of the equations of gas dynamics as given by 
Ovsiannlkov Ill are used to describe adiabatic expansion of gas ellipsoid 
in vacuum. Numerical results describing the variation of shape of a gas 
cloud and the time history of its expansion are given. 

Similar solutions for the case of gas motion with heating were found. 
These solutions are a generalization of the particular solutions of the 
Sedov's [2 and 3] problem of one-dlmenslonal adiabatic expansion and similar 
solutions [4 and 5] for motion with heating (where the velocity is propor- 
tlonal to the distance from the center of symmetry). The pressure (and den- 
sity) distribution turns out to depend on one arbitrary function, where the 
surfaces corresponding to constant values of the function are ellipsoids. 

I, We shall write the equation of gas dynamics referred to Lagrangian 

coordinates (the initial position of a particle) 

O--~-=u~' - ~ - - - - - - v ~  ( i=i ,  2,3), v(~k,o) --o~10~20~ v = T  (1.1) 

where  u~ i s  t h e  v e l o c i t y  o f  p a r t i c l e s ,  t i s  t h e  t i m e ,  p i s  t h e  p r e s s u r e ,  

v is the specific volume, p is the density and xl are Eulerian coordinates 

of the particles whose Lagranglan coordinates ~i = x~ (O) ; the partlal deriva- 

tives with respect to time in the equation describing velocity of particles 

and in the momentum equation are taken at constant values of E,, ~, E3, 

and the Jacobian of the transformation from x: to ~i In the rlght-hand side 

of the continuity equation is taken at t = const . The notation J'(~k) 

represents f(~l, ~, ~3) • 

It is evident that the relationship 

O_Ap Op ~ op o~2 ~p 0~3 (1.2) 

also holds. 

In order to describe the motion in regular conditions it is necessary to 
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separate the variables (the Lagrangian space coordinates and the time). Then~ 

the third of the equations (I.I) and Equation (1.2) are simplified (~.3) 

x t = xt ° (t) X (~a), ut = ui ° (t) U (~k)' p ---- pO ( t ) P  (~k)' V = V ° ( t )V (~k) 

Without loss of generality, we can set x, ° (0) - i , from which follows 

X(~ k ) = x, o (O) = gl Introducing the notation x~ ° (~) = ~, ($) , we obtain 

= __ xi dq~ i Ox, Ox20x3 ~p Oe p° (t) (i .4) 

By s u b s t i t u t i n g  (1 .3 )  i n t o  ( 1 . 1 ) ,  a sy s t em o f  o r d i n a r y  d i f f e r e n t i a l  equa -  
t i o n s  in ~ and a System of partial differential equations of first order 

in p is obtained d~v~i I __ V OP 

g)i dt~ p° (t) ~° (t) ~i O~i - -  0¢i (~ .5)  

In order to integrate (1.5) It is necessary to prescribe a relation between 

pc ($) and uo(~) as well as the dependence of p on V and ~ which can 

be fotw~ from the energy equation provided it admits the separation of varia- 

bles (1.3). Moreover, it Is necessary to prescribe the value of ~he separa- 

tion constants a,, the initial values pc (0) and v ° (0) , as well as the 

value oD p at the arbitrary point. Without loss of generality we can set 

p(O, O, O) - V(O, O, O) = I , then pC (~) and v°(~) are the pressure and 

the specific volume at the center of coordinates. 

a, We shall consider the adiabatic flow of a gas 

p ( ~ ,  t) v x (~k, t) ---- pO (t) [v ° ( t ) l X P V  ~ (2 . t )  

The initial distribution of entropy can be prescribed by an arbitrary 

f u n c t i o n  p V  ~ = / - x  (~k)' / (0, O, O) = t (2 .2)  

Then the system of equations (1.5) assumes the form 

d~p, yo V o 
(Pi " - ~  (q)lq)2q)3)-(x-1) = •ip° CO) ?2° (0), (t) = (O)q)lq)2(p$ (2.3) 

~p p-1/x 
= -- ai (2 .4 )  

0~, ~, / ( ~ )  

The values of the separation constants el can be determined from the 

given dimensions of the gas cloud alone the axes ~* . In fact, the partial 

differential equations (2.4) can be integrated along the respective axes in 

the same manner as ordinary equations, provided the two remsi~ coordinates 

are kept constant. For example, integrating along the axis ~, , we get 

x-1 ~, 

o 
Satisfying the boundary condition p - 0 on the interface ~ the vacuum, 

the ~, for correapondlr~ ~,* are found. For ~ - I the simple equation 

results 
x-i 

= 1 ~ s u - - 1  - + (2.6) 
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Hence, provided all a~> 0, then the boundary surface is a trl-axial ellips- 

oid with semlaxes given by 

2~ t (2 .7)  
~i = ( ~ _  t) (~i*) 2 

The successive integration along the axes can be used in the general case. 

In order to have the results independent of the order of integration it is 

necessary to impose the following condition of the function ~ : 

l of t o! t of - -  (2 .8)  

When the condltion (2.8) is satisfied, the system (2.~) is compatible. 

It follows from (2.8) that f is invariant with respect to exchange of 

a~ ~ for a:~ ~ which takes place when ~ is a function of a linear com- 

bination of squares of the Lagrangian coordinates 

/ = / (~), a = ~ = a ~  ~ -b a ~  ~ + a ~ s  ~ (2.9) 

By changing the arbitrary function f , different pressure distribution 
profiles within the ellipsoid can be obtained. Let P * g(o), then 
fl = -- ~'(~) ~ where ~ is the nondimensional density profile, YO = 1. We 
shall consider, for example, pressure distrlb~tions having the form 

2n 
= I~_ (~0) 

2 n  ] ' ~ i - -  (~i*)~ 

All such distributions correspond to parabolic temperature distribution 

P V =  ~ - -  - -  (2 .11 )  
2 n  

According to (2.10) and (2.11) the entropy associated with the particles 
has the distribution given by 

pv  ~ (t ~ ~-'~(*-~)÷~ = - - 2 n  ] 

Assumln~ n = ~/ (a -- i) the distribution given by (2.6) is obtained. 

3. In [I] a more general relationship betwee~ x, and ~: than that of 
Equation (1.~) is considered. Namely 

• i = )~ ~i~ (0 ~, u~ = ~ ~k ~ k  (3.t)  
k k dt  

The elements ~,, can be formed Into a matrix y(O~(~))' Resulting from the 
definition ~ we have ~,k (0) = 5,~ • Therefore is a unit ~trix. 
From (I.3) we have 

v ° (t) = [ M ]  v ° (0) (3.2) 

Here ]MI designates the absolute value of the deter~ff~uant, with ]M|- l 
at t " 0 . Moreover, substituting Q3.1) and (1.3) into the second of Equa- 
tions (1.1) we obtain 

k " ~ -  ~k = - -  (t) (t) ~ O ~ i k  (3 .3)  

Equation (3.3) can be satisfied if the variation of the matrix elements 
~,, is described by Equation 

dZM 
M "  - -  v ° pQ dt  2 (t) (t) L (3 .4)  

where M ~ is the transpose of matrix M, and L is a constant square matrix 
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o f  third order. When only adlabatl c expansion is investigated, as in [i], 
then the following relation is introduced: 

p°  (t) == pO (0) M 1 -× (3.5) 

It is evident that Ovslannlkov's solution can be generalized to the non- 
a d i a b a t i c  c a s e s  a s  l o n g  a s  e n e r g y  e q u a t i o n s  a r e  s u c h  a s ~ t o  a t l @ w  f o r  s e p a r a -  
t i o n  of variables (1.3). In either case, instead of Equation (2.4) we have 

OP \~  

The matrix L is skew-symmetrlc and can alwaYs be diagonallzed [ 1 J .  The 
solut$on of the system of equationsfi3.4) is determlned by the initial values 
of M(O~ and M'(O} , where :M'- ~/d~ . If r~he eXPansiOn starts from rest 
then M'(O) is a null matrix. It follows from (3°~)that for this case the 
matrix M remains diagonal for a~l ~ime. This is also the case when the 
initial values of velocities along the axes of coordinates are proportional 
to the distance from the Center of symmetry only along a given coordinate, 
i.e. when M'(O) is diagonal. 

The diagonalization of matrix M is possible if ~,k" Xik~, and, accord- 
Ingly, instead of (3.1) we shall have 

P e r f o r m ~ x ~  a n  e l e m e n t a r y  r o t a t i o n  o f  c o o r d i n a t e s  a n d  d e s i g n a t i n g  ~ , ,  b y  
~ ,  we s h a l l  o b t a i n  t h e  f o r m u l a s  f r o m  S e c t i o n  1 .  

In this way it is shown that in the case the ,notion starts from r~st or 
with initial velocities along the three principal axes o f  the ellSpsold, 
then instead of the nine equations (3.~) the system of equations (1.5) should 
be used, or in the adiabatic case the system (2.3). In the followln~ we 
shall consider only this case, as it is of greatest practical interest. 

~. We shall consider the time variation of the dimensions of the ellips- 

oid with adiabatic changes of state. We shall introduce a reference time 

t o- ro/u ~, where r e is the characteristic dimension and uo is the charac- 

teristic velocity. 

From the system of equations (2.3) we obtain 

d~q~' ((P~(P'nDs)-('~-:O {3, 2 ( 4 . 1 )  
'dT~ - -  qPt 

( ~ 2  = ~ t  r°~p° (O) v° ' ~: = -~ot ) 
uo fl 

For the distribution of the parameters inslde the ellipsoid (2.6) or 

(2,10), having taken r e to be the smallest of the ellipsoid dimensions ~L* 

(to be specific) and uo a = 2~po(O)v ° (O) , we obtain B, s (~l*) e- (g1*~ 

It follows from (4.1) that the greatest variation of ~i is in the direc- 

tion of the minor axis of the ellipsoid. If the expansion is one-dimenslonal 

or almost one-dlmenslonal then instead of the system (#.i), it is necessary 

to integrate only one equation [ 3] 

d'~ (x-1)-1 (4.2) d~ ~ ~ ~ l  -~ 
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In the case of spherical symmetry v - 3 , for cylindrical symmetry around 

the major axis u - 2 , and for a strongly oblated ellipsoid ~ - 1 , Equa- 

tion (4.2) is integrable [3]. 

2 ( ¢ I =  d~l / (4.3) 

For large values of ~ and, consequently large epz, the nondimensional 
velocity $ approaches a constant value (i.e. inertial,expansion follows). 

The maximum velocity of particles along a given axis, i.e. the velocity of 

the ellipsoid boundary, is given by 

dq~t ~i* dq~i ~i* 
-- Uo = uo ~ i  ( 4 . 4 )  

The following table gives values of the ratios of the ellipsoid semlaxes 

at the time when the expabsion becomes inertial, for a number of different 

initial relative dimensions E,*/~l* and different values of the adiabatic 

exponent a . The results are based on the assumptions of symmetry around 

one axis of ellipsoid which is initially at rest (i.e. the initial velocities 

$~(0) - O) . The following notation is also introduced: ~1*eo" ~s*, and 
@ @ 

~ 3  ~ 81~1C l a t  T ~ co 

s, 2 3 5 7 iO 

$1 

t .4t  
i.55 
i .8 i  

i .4 i  
i.50 
i.75 

1.76 
2.05 
2.62 

t .64 
1.88 
2.44 

2.39 
2.99 
4.26 

2.06 
2,47 
3.73 

2.96 
3.87 
5.91 

2.4i 
2.94 
5.00 

3.50 
5.i8 
8.39 

2.63 
3.58 
6.88 

% 
5/a 
3 

% 
5/s 

3 

It follows from the above table that the ratios of the axes of the ellips- 

oid change during the process of expansion, In such a manner, that the origi- 

nally smallest ratio becomes the largest. This results from the fact that 

the velocity along the major axis is smaller than that along the minor, 

because, as follows from (4.1), acceleration along the major axis takes place 

at later stages of the expan- 

Y~. 1 

sion when the gas has already 

been cooled by expanding in 

direction of the minor axis 

of the ellipsoid. The motion 

in the "secondary" direction, 

for sufficiently large magni- 

tude of the axes ratio, can't 

substantially influence the 

expansion in the "primary" 

direction, since the latter 

becomes practically inertial. 
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The table also shows that the effect of variation of the axes ratio become~ 

more pronounced as the adiabatic exponent ~ increases. It is also more 

pronounced for "cylindrical" (x~- xs)~ than for "disk llke" (x~- xs) "explo- 

sion". This is due to the rate of cooling of the gas. Naturally, the effect 

also increases with the increase of the initial ratio of the semlaxes, since 

the interval of time during which the motion is practically one-dlmensional, 

increases. 

Fig.1 shows thw time variation of density at the center of the expanding 

region for a number of different ratios of the ellipsoid semlaxes so and 

for a - 1.4. With increasing s o the density decreases less rapidly, never- 

theless for a sufficiently large value of time 0 ~ t -3 

We shall discuss the mechanical effect of the directional character of 
the expansion in terms of the velocity head momentum. Let us co,are the 
magnitude of the momentum at corresponding points for an ellipsoid and a 
sphere, diameter of which is equal to the minor axis of the ellipsoid. In the 
case of the ellipsoid the point lles in the central plane normal to the major 
axis at a distance R from the center. At the instant t o , when the bound- 
ary of the expanding gas reaches this point, the density of the gas at the 
center becomes 

p (0, ~) = ~ (0, O) xl* (0) z ,*  (0) xs* (0) (4.5) 
xl* (to) x2* (to) xs* (to) 

Let x~- x~ and ,v~ *~ o~xa*, where s~ can be determined from the table. 
Using the notation x1*(O) - r - g* and bearing in mind that xs(to) =R , 
we obtain from (4.5) 

Rsp (0, t) := p (0, O) slsor 3 (4.6) 

The velocity along the axes can be found by s I , taking into account the 
integral of the system (2.3) cr (4.1) 

i ~i - (× -- I) 

For ~- ~, which is the case for " S~" $a, from (4.7) results 
(4.3). Re exlstance of such an integral iSs L readily verified by substitu- 
tion in the initial system. 

If ,, (0) - 0 for all $ , using (4.4) and for ~2q03~. ® we obtain 

2 (4.8) X2 (uJ)~ tt02 
<~ -1-----7 

i 
For the symmetric case - during inertial expansion ut* s, us* ; 

therefore (4.8) leads to ut* ~,* 

(u l* )2 - -  ( × - -  l ) ( 2 + s 1 - 2 )  (4.9) 

Accordingly, the velocity head momentum Is proportional to 

p (0, O) uo sos1 

R t / 2 + s1-2 

~'nls shows that the velocity head momentum for the ellipsoid i l l a r e a s e s  
w i t h  i n c r e a s i n g  r a t i o  o f  t h e  s e m i a x e s  and i s  eos~ t i m e s  l a r g e r  t h a n  f o r  an 
"inscribed" s p h e r e .  

~. We shall consider the motion of gas with the inclusion of heating. 

Let the heating intensity be an exponential function of the temperature and 

the density and an arbitrary function of the time and the ~ay~ian space 
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coordinates 

ot + p ~ t =  q w,v,J T, n W ~(~k) (5.t) 
As i n  t h e  o n e - d i m e n s i o n a l  case  [4  and 5] the  v a r i a b l e s  a r e  s e p a r a b l e  f o r  

some s p e c i a l  v a l u e s  of  t h e  i n i t i a l  c o n d i t i o n s .  From ( 1 . 3 )  w i t h  ( 1 . 6 ) ,  we 

o b t a i n  an  e q u a t i o n  f o r  p r e s s u r e ,  d e n s i t y  i n  t he  c e n t e r  and f o r  d i s t r i b u t i o n  
p a r t i c l e  p r o p e r t i e s  

( ~ - - 1 )  dt + ~ =  q ~ (5.2) \ p , v ,  ] \ v , /  11 

P V  Y = X -1/(~'+1), ~ ~- I --~- [~ / ( t  + a)  (5.3) 

Naturally, the function k(gk) is subjected to the same restrictions as 

f(g~) (Equation (2.8)). Distribution of properties can be determined as in 

Section 2 or as in [5]. 

We shall consider the case of k - 1 , (energy release per unit mass is 

the same for all particles). We shall limit the analysis to the case where 

a - 0 , 8 - O , y - i . From (5.2) and (2.3) we get 

P V  -= i ,  P -= e x p  [ --  a/.  (axe12 q_ a2~22 q_ %~a2)1 (5.4)  

For y = I , the region ccupied by the gas is unbounded, and the magni- 

tudes a~ can be determined by e.g. from given dimensions of elllpsoidal 

surface with a fixed value of the dimensionless pressure /~< i (we shall 

note that the mass of the expanding ~tter is bounded and constant). Let us 

denote these dimensions by gi*. Then (~i*)2al - 2 . Let ~ - I , i.e. the 

energy source is of uniform intensity. Then, the solution of the energy 

equation has an exponential form 

p ° v  ° = B t ~ p , v , ,  v ° = A ' t m v , ,  Bt+,  ̀  __ Q ( × - -  i) A - '~  (5 .5)  
n ( t  - ~ - a )  -= i - -  m y  - -  [ n + m ~ ( x - - i ) l p ,  v, 

The system of equations determining W assumes the form 

dZq)i - -  a i B t m p ,  v ,  (5.6). 
C~i d t  ~ 

These equations have also solutions of exponential form for ~ 0 i ~  t 

x i =  h ( p i  = ~ , ~ ( I + V ~ , O  

Particles, whose initial coordinates were gi" g:*, corresponding to 

p , pO are now fcund at points equidistant from the center. This means 

that the expansion assumes the spherical syn~netry. Similar results are 

obtained for cases where a ~ 0 , 8 # 0 , y ~ 1 , and when the velocity 

~- d~/d~ increases with time without bounds i.e. for n > 0 . Since it 

follows from (5.7) that m = ~(i + ~n), then n(l + a + ~vS) = I--~8 and 

for a > O , 8 > 0 the index n > 0 only for 8 < 1/~ . 

The detailed discussion of the character of temperature variation for 

the one-dlmensional case is given in [5]. 
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The exact solutions of the equations of gas dynamics were obtained for 
particular values of the initial conditions. The results can be also used 
to describe approximately the variation of parameters at the initial condi- 
tions slightly different frbm those for which the expansion is selfsimilar 
at the initial sZage. 

It must be noted, however, that the particular solution considered shall 
not be asymptotic for the adiabatic case. The case of expanslon with heating 
and unlimlted temperature rise will ~Ive the asymptote (for ~hysical reasons 
[4 and 5]) for various initial distributions of the density (as was shown 
for the one-dlmensional case [5])and for arbitrary shape of the initially 
cold cloud. However, this should be verified by numerical solutions. 

For the adiabatic cases, or cases with heating but with falling tempeta- 
tures, the differences in the patterns of motion for various conditions can 
be not only quantitative, but also qualitative. E.g. for ~ > 2 , for suf- 
ficiently long cylinder with constant parameters along the axis, there exists 
a region where the motion is strlctly cylindrical, as following the expansion 
in direction normal to the axis and rapid decrease in sonic velocity, the 
influence of the ends is not felt in the central region [5] where the density 
follows the law p ~ t -s . However, in the considered example of ellipsoid 
expansion with pressure gradients in the axial direction at the initial stage 
of the process, after all, follows the cubic law. 

The author is indebted to O.S.Ryzhov and G.M.Shefter for valuable discus- 

sions and to A.N.Zimina for computations. 
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