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Exact particular solutions of the equations of gas dynamics as given by
Ovsiannikov [1] are used to describe adiabatic expansion of gas ellilpsoid
in vacuum. Numerical results describing the variation of shape of a gas
cloud and the time history of 1lts expansion are given.

Similar solutions for the case of gas motion wlth heatlng were found.
These solutions are a generalization of the particular solutions of the
Sedov's [2 and 3] problem of one-dimensional adlabatic expansion and similar
solutions [4 and 5] for motion with heating (where the velocity is propor-
tional to the distance from the center of symmetry). The pressure (and den-
sity) distribution turns out to depend on one arbitrary function, where the
surfaces corresponding to constant values of the functlon are ellipsolds.

l, We shall write the equatlion of gas dynamics referred to Lagrangian
coordinates (the initilal position of a particle)

0@- Ou; v (E;k, t) . axl 6:1:2 82'3
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where 1y, 1s the veloclity of particles, ¢ 1is the time, p 1is the pressure,
v 1s the specific volume, p 1s the density and x, are Eulerilan coordlnates
of the particles whosé Lagrangian coordinates g,= x, (0) ; the partial deriva-
tives with respect to time in the equation describing velocity of particles
and in the momentum equation are taken at constant values of ¢g,, &;, &;,

and the Jacoblan of the transformation from x, to g, in the right-hand side
of the continuity equation is taken at t = const . The notation p(g,)
represents r(g,, €5, &) .

It 1s evident that the relationship
Op _ Op 0% , 0Op %k 4 Op Ot (1.2)

bry OO, T w1 9% 05,
also holds,

In order to describe the motion in regular conditions 1t is necessary to
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144 1.V. Nemchinov

separate the variables (the Lagrangian space coordinates and the time). Then,
the third of the equations (1.1) and Equation {1.2) are simplified (1.3)

. o
=2 OXE) w=u"@OU &)y p=p°@OPE) =v°()V (§,)
Without loss of generality, we can set x,°(0) = 1 , from which follows
x(g,) = x,°(0) = g, . Introducing the notation x,°(¢) = @, (¢) , we obtain
7=k, u=E o =L o % _ 9P p ()

iar T d g — PP g =g o U4)

By substituting (1.3) into (1.1), a system of ordinary differential equa-
tions in ¢, and a system of partial differential equations of first order
in p 18 obtained P ’ _ _K?_}l o

P G p° () v° (¢) - B 08, & (15)

In order to integrate (1.5) 1t 1s necessary to prescribe a relatlon between
p°(¢) and v°(t) as well as the dependence of p on ¥ and £ which can
be found from the energy equation provided it admits the separation of varia-
bles (1.3). Moreover, it is necessary to prescribe the value of the separa-
tion constants a,, the initial values p°(0) and v°(0) , as well as the
value off P at the arbitrary point. Without loss of generality we can set
p{0, 0, 0) = ¥(0, 0, 0) =1, then p°(t) and v°(tz) are the pressure and
the specific volume at the center of coordinates.

2. We shall consider the adiabatic flow of a gas

p . )V (§, 1) = p° () [v° @OFPV" (2.1)
The initial distribution of entropy can be prescribed by an arbitrary
function PV =5"@E), (0,00 =1 (2.2)

Then the system of equations (1.5) assumes the form

%%(%%%)““’ =ap® (0)2° (0), ¢° () = P O)Prpe@s  (2.3)

op P7V* 1 2.4
% T TG =4

The values of the separation constants q, can be determined from the
given dimensions of the gas cloud along the axes gf . In fact, the partial
differential equations (2.4) can be integrated along the respective axes in
the same manner as ordinary equations, provided the two remalning coordinates
are kept constant. For example, integrating along the axis g, , we get

%-1

&y
= %—1
P b= 0h=0=1—""u| 6008tk (5
0
Satisfying the boundary condition P « O on the interface with the vacuunm,
the q, for corresponding e are found. For s = 1 the simple equation
results

x-1

P* =1 — (o B + agly? + ofe?) (S5 (2.6)




Expansion of a tri-axial gas ellipsoid in a regular behavior 145

Hence, provided all q,> 0, then the boundary surface 1s a tri-axial ellips~
oid with semiaxes glven by

R S 2.7
M= D G (7

The successlive integration along the axes can be used in the general case.
In order to have the results independent of the order of integration it 1s
necessary to impose the followlng condition of the function p :

Lt oof 1 of 1 9f
01081 0af2O0E:  Qgb3OEs (2.8)

When the condition (2.8) 1s satisfied, the system (2.4) 1s compatible.

It follows from (2.8) that 7 1s invariant with respect to exchange of
a7 for «,2,° which takes place when s 1s a function of a linear com-
bination of squares of the Lagrangian coordinates

f=f (o), o = 1% = 0,82 + 0,8, + agfy? (2.9)

By changing the arblitrary function s , different pressure distribution
profiles within the ellipsoid can be obtained. Let P = ¢(o), then
0 =—2¢'(g) , where @ 1s the nondimensional density profile, 10 = 1. We

shall consider, for example, pressure distributions having the form

_ iy __in_
P=t—gy),  u=ap (2-10)
All such distributions correspond to parabolic temperature distribution
2
PV=1— 1 (2.11)
n

According to (2.10) and (2.11) the entropy assocliated with the particles
has the distribution given by

~ 2n
Assuming n = x/ (x — 1) the distribution given by (2.6) 1s obtained.

PVK _ (1 i)-—n(x—l)+x

3. In [ll a more general relationship between x, and ¢, than that of
Equation (1.}) is considered. Namely

T;= anik ) &, u; = Zék ik (3.1)

The elements @,, can be formed into a matrix n(¢) . Resulting from the
definition g, we have @,,(0) = 8,, . Therefore x¥{0) is a unit matrix.

From (1.3) we have
v (8) = [ M [v° (0) 3.2)
Here |y] designates the absolute value of the determinant, with lﬂ&- 1

at ¢t = O, Moreover, substituting (3.1) and (1.3) into the second of Equa-
tions (1.1) we obtain

PO _ o o opP 1
;71?‘ .= —v° (1) p° (1) %ﬁ;%k (3.3)

Equation (3.3) can be satisfied if the varlation of the matrix elements
o, 1s described by Equation

. 2M
MY o= () p? ()L (3.4)

where MY 1s the transpose of matrix M, and 1 1s a constant square matrix
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of third order. When only adiabatic expansion 1is investigated, as in [1],
then the following relation is introduced:

o) = p® () M |7* (3.5)

It 18 evident that Ovsiannikov's solution can be generalized to the non-
adiabatic cases as long as energy equations are such as.to allow for separa-
tion of variables (1.3). In either case, instead of Equation (2.4) we have

, oP N
V oE, %Lkzgl

The matrix [ 1is skew-symmetric and can always be diagonalized [1]. The
solution of the system of equations (3.4) 1s determined by the initial values
of M(0) and N’(0) , where N’'= g¥/4t . If vhe expansion starts from rest
then N’(0) 1s a null matrix. It follows from (3.4) that for this case the
matrix n§ remalns dlagonal for ail time. This is also the case when the
initial values of veloclties along the axes of coordinates are proportional
to the distance from the center of symmetry only along a given coordlnate,
1.e. when n’(0) is diagonal,

The diagonalization of matrix ¥ is possible if ¢ .= A,,p}, and, accord-
ingly, instead of (3.1) we shall have

Ty =@y ; eI Up = % R

Performing an elementary rotation of coordinates and designating eo,, by
@, we shall obtain the formulas from Section 1.

In this way it 1s shown that 1n the case the otion starts from rest or
with initial velocltles along the three principal axes of the ellipsold,
then instead of the nine equations (3.4) the system of equations (1.5) should
be used, or in the adiabatic case the system (2.3). In the following we
shall consider only this case, as 1t is of greatest practical interest.

4, We shall consider the time variation of the dimensions of the ellips-
oid with adiabatic changes of state. We shall introduce a reference time
ty= ro/Us, Where I, 1s the characteristic dimenslon and u, 1s the charac-
teristic velocity.

From the system of equations (2.3) we obtain

L (1gage) Y
5 = _l_’(.p_i__* B2 (4.1)

2 _ . ro?p® (0) ° (0) — _t_)
= g, fo'p" (V) v" (U) T=
(Bi ' ue? ’ b
For the distribution of the parameters inside the ellipsoid (2.6) or
(2,10), having taken r, to be the smallest of the ellipsoid dimensions g,*
(to be specific) and u,® = 2np°(0)v°(0) , we obtain p,? (s M= (g*F

It follows from (4.1) that the greatest variation of ¢, 18 in the direc-
tion of the minor axis of the ellipsoid. If the expansion is one-dimensional
or almost one-dimensional thén instead of the system (4.1), it 1s necessary
to integrate only one equation [ 3]

d’q)l
dt?

= @ (x-1)-1 (4_2)
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In the case of spherical symmetry v = 3 , for cylindrical symmetry around
the major axis y = 2 , and for a strongly oblated ellipsold = 1 , Equa-
tion (4.2) is integrable [3].

2 dgy
h& — b2 — v (x-1)) - S | = .
V=92 0) + (4 — o) gty (=T (4.3)
For large values of 1 and, consequently large ¢,, the nondimensional
veloclty ¢ approaches a constant value (i.e. inertial expansion follows).
The maximum veloclty of particles along a given axis, 1.,e. the velocity of
the ellipsoid boundary, is glven by

dog  &*  deg; B bt
= T b g =gy W (4.4)

The followlng table gives values of the ratlos of the ellipsoid semiaxes
at the time when the expabsion becomes inertlal, for a number of different
initial relative dimensions £.*/z,* and different values of the adiabatic
exponent » . The results are based on the assumptions of symmetry around
one axis of ellipsoid which 1s initially at rest (i.e. the initial velocities
y; (0) = 0) . The following notation 1s also introduced: & 6 *s = £,*, and

xs*- lel* at T = ®

u* = g*

o] = | = 1 s ] 7] o =
1.4 1.76 2.39 2.96 3.50 s
T1==2 51 1.55 2.05 2.99 3.87 5.18 5/a
1.81 2.62 4.26 5.91 8.39 3
1.4 1.64 2.06 2.4 2.63 s
Ta—23 2 1.50 1.88 2.47 2.94 3.56 5/s
1.75 2.44 3.73 5.00 6.88 3

It follows from the above table that the ratios of the axes of the ellips-
old change during the process of expansion, in such a manner, that the origi-
nally smallest ratio becomes the largest. This results from the fact that
the velocity along the major axis is smaller than that along the minor,
because, as follows from (4.1), acceleration along the major axis takes place

at later stages of the expan-~

g 24 2e o 12 slon when the gas has already
* ook 1 been cooled by expanding in
=1 \ direction of the minor axis
\ of the ellipsoid. The motion
-2 SN (1.1.10)

~ in the "secondary” direction,

% for sufficiently large magni-

-7 11,2) \\§ tude of the axes ratio, can't
-4 \ substantially influence the
A o /,p)\ expaneion in the "primary”
direction, since the latter

Fig. 1 becomes practically inertial,
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The table alsoc shows that the effect of varlation of the axes ratlo becomes
more pronounced as the adiabatlc exponent » 1increases. It is also more
pronounced for "cylindrical" (x, = x,), than for "disk like" (x;= x5} "explo-
sion". This 1s due to the rate of cooling of the gas. Naturally, the effect
also increases with the increase of the initial ratio of the semiaxes, since
the interval of time during which the motion 1s practically one~dimensional,
increases.

Fig.l shows thw time variation of density at the center of the expanding
region for a number of different ratlos of the ellipsoid semlaxes g, and
for x = 1.4, With lncreasing 8, the density decreases less rapidly, never-
theless for a sufficiently large value of time p ~ =2,

We shall discuss the mechanical effect of the directlonal character of
the expansion in terms of the velocity head momentum. Let us compare the
magnitude of the momentum at corresponding polnts for an ellipsoid and a
sphere, dlameter of which is equal to the minor axis of the ellipsoid. In the
case of the ellipsoid the point lies in the central plane normal to the major
axls at a dilstance R from the center. At the instant ¢, , when the bound-
ary of the expanding gas reaches thils point, the density of the gas at the
center becomes

z1* (0) zo* (0) z5* (0)
z,* (fy) m* (tg) 3™ (fo)

p(0,1) =p(0,0) (4.5)

Let x,= x; and x,*- g,x:*, where 8, can be determined from the table.
Using the notation x,*(0) = r = £* and bearing in mind that x;(¢,) =7 ,

we obtain from (4.5)
R3; (0, &) = p (0, 0) 55,72 (4.6)

The veloclty along the axes can be found by 8,, taking into account the
integral of the system (2.3) cr (4.1)

2 2 Cine P2 (0)
2 — e V4 2 %7
i B; (% —1) i Bi
For = pg= @y, wWhich is the case for g, = Bu= By, from (4.7) results
(4.3). e exdstance of such an integral 1s readily verified by substitu-

tion in the initial system.
Ir y,(0) = O for all ¢ , using (4.4) and for o, 9,9, we obtain

2 (ui*)z = ug '(;—_E—i)‘ (4.8)

For the symmetric case u* = y,* during inertial expansion u,™= g u,” ;
therefore (4.8) leads to
ug?

2
(u*)? = X — 1) (2 + 5,79 (4.9)
Accordingly, the velocity head momentum 1ls proportional to

p (0, 0) u, 5951
R V2 + 572
This shows that the velocity head momentum for the ellipsold increases

with 1ncregsing ratio of the semlaxes and 13 g,s, times larger than for an
"inscribed” sphere.

5. We shall conslder the motion of gas with the inclusion of heating.
Let the heating intensity be an exponential function of the temperature and
the density and an arbltrary function of the time and the Lagranglan space
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coordinates
de

v, pv \—% [ v\-B t
Gt re=0 (B () n () A (5.1)
As 1n the one-dimensional case [4 and 5] the varlables are separable for
some speclal values of the initial conditions. From (1.3) with (1.6), we
obtailn an equation for preasure, density in the center and for distribution

particle properties

1 d(p°v°) o dv° pov° \~a [ p° \-B t
k=1 ~ +P =4 ( Pals ) (v* ) N <-i:) (5-2)
PVY = p-1esn), r=1+8/(1++a) (6.3)

Naturally, the function X(gk) 1s subjected to the same restrictlons as
7(e,) (Equation (2.8)). Distribution of properties can be determined as in
Section 2 or as in [5].

We shall conslder the case of X = 1 , (energy release per unit mass 1s
the same for all particles). We shall 1limit the analysis to the case where
a=0,8=0, y=1. From (5.2) and (2.3) we get

PV =1, P = exp [— Y/, (0,5® + a2 + a3E,%)] (5.4)

For y =1 , the reglon ccupied by the gas is unbounded, and the magni-
tudes g, can be determined by e.g. from given dimensions of ellipsoidal
surface with a fixed value of the dimensionless pressure p°< 1 (we shall
note that the mass of the expanding matter is bounded and constant). Let us
denote these dimensions by g,*, Then (£M2q,=2 . Let n =1, i,e. the
energy source 1s of uniform intensity. Then, the solution of the energy
equation has an exponential form

P’ = Bitpyv,, 7 = Atm,, Blie — Qr—1 A (5.9)
n(l+a)=1—mv T I mv (k— 1) pavs '
The system of equatlons determining ¢ assumes the form

g, .
% g = WBIMPLvs (5.6).

These equations have also solutions of exponentlal form for @i:§>1

& 2Bp. v e
R R 1 on | S50 %T%k

2o = Loy (gi*>t . (5.7)

Particles, whose 1lnitlal coordinates were g, = gf’, corresponding to
P = P°, are now fcund at points equidistant from the center. This means
that the expansion assumes the spherical symmetry. Simllar results are
obtained for cases where o # O , 8 # O, vy # 1 , and when the veloclity
¥~ do/dT 1increases with time without bounds i.e. for n > O . Since it
foliows from (5.7) that m = v(1 + 3n), then n(l +a + 3vp) = 1—vg and
for @ > 0, g> 0 the index n > O only for g < 1/v .

The detalled discussion of the character of temperature variation for
the one-dimensional case is given 1in [5].
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The exact solutions of the equations of gas dynamics were obtained for
particular values of the initial conditions. The results can be alsc used
to describe approximately the variation of parameters at the initial condi-~
tilone slightly different frdm those for which the expansion is selfsimilar
at the initial stage.

It must be noted, however, that the particular solution considered shall
not be asymptotic for the adiabatic case. The case of expanslon with heating
and unlimited temperature rise will give the asymptote (for physical reasons
[4 and 5]) for various initial distributions of the density (as was shown
for the one-dimensionsl case [SJ)and for arbltrary shape of the initially
cold cloud. However, this should be verifled by numerical solutions.

For the adlabatic cases, or cases with heating but with falllng tempeta-
tures, the differences in the patterns of motion for various conditions can
be not only quantitative, but also gqualitative. E.g. for x > 2 , for suf-
ficlently long cylinder with constant parameters along the axls, there exists
a reglon where the motion is strictly cylindrical, as following the expansion
in direction normal to the axis and rapid decrease in sonic veloclty, the
influence of the ends 18 not felt in the central region [5] where the density
follows the law p ~ t~?. However, 1in the considered example of ellipsoid
expansion with pressure gradients in the axial direction at the initial stage
of the process, after all, follows the cublc law,

The author 1s indebted to 0.S.Ryzhov and G.M.Shefter for valuable discus-
sions and to A.N.Zimina for computations.
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